HOW TO DO EARLY NUTRITION in VLBW INFANTS

David H Adamkin M.D.
University of Louisville USA
NUTRITIONAL CHALLENGES in EARLY NUTRITION

Strategies to Prevent Postnatal Growth Failure
 Early Total Parenteral Nutrition
 Gut Priming and Early Advancement of Enteral Feeding
 Transition from TPN to Enteral Feedings
TPN

Limit Catabolism

Accrete LBM

Prevent PGF

Decrease Morbidities (Gluc/K)

Optimize Neurodevt

Synergy with early enteral and in Transition to Human Milk
METABOLIC EMERGENCY

SERUM AMINO ACIDS → METABOLIC SHOCK

STARVATION RESPONSE

ENDOGENOUS GLUCOSE PRODUCTION

LOW INSULIN → HYPERGLYCEMIA (HYPEROSMOLALITY)

NONOLIGURIC HYPERKALEMIA
Louisville Early TPN Experience

TPN-related data ELBW

<table>
<thead>
<tr>
<th></th>
<th>2000-01</th>
<th>2002-04</th>
<th>2006-07</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age @ TPNi</td>
<td>22.4±22.3</td>
<td>9.5±12.2</td>
<td>4.6±6.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Days TPN</td>
<td>25.8±12.4</td>
<td>31.5±26.9</td>
<td>25.2±21.3</td>
<td>NS</td>
</tr>
<tr>
<td>Total intake* (cc/k/d)</td>
<td>141.5±32.6</td>
<td>150.1±31.3</td>
<td>129.3±31.3</td>
<td>0.018</td>
</tr>
<tr>
<td>Total kcal/k/d*</td>
<td>41.4±10.2</td>
<td>45.5±9.7</td>
<td>56.5±13.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Total Protein* g/k/d</td>
<td>1.2±0.4</td>
<td>1.8±0.6</td>
<td>3.0±0.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Insulin</td>
<td>8.6%</td>
<td>3.2%</td>
<td>5.0%</td>
<td>NS</td>
</tr>
<tr>
<td>Age @ nadir</td>
<td>4.9±3.4</td>
<td>4.4±6.2</td>
<td>2.9±3.2</td>
<td>0.044</td>
</tr>
<tr>
<td>% wt change</td>
<td>-14.0±7.7</td>
<td>-10.6±6.2</td>
<td>-8.8±5.9</td>
<td>0.001</td>
</tr>
<tr>
<td>RTBW</td>
<td>13.9±6.3</td>
<td>10.7±5.7</td>
<td>8.3±5.0</td>
<td><0.001</td>
</tr>
<tr>
<td>EUGR_w @ d/c</td>
<td>57.1%</td>
<td>34.7%</td>
<td>25.0%</td>
<td>0.004</td>
</tr>
<tr>
<td>EUGR_HC @ d/c</td>
<td>10.0%</td>
<td>6.1%</td>
<td>10.0%</td>
<td>NS</td>
</tr>
</tbody>
</table>

*first five days (average)
ELBW INFANTS WITH HYPERGLYCEMIA-
HYPERKALEMIA IN THE FIRST WEEK OF LIFE

Louisville TPN Experience
Glucose by epoch and day of life

Improved glucose tolerance with higher protein dose

Protein 1.2 g/k/d epoch 1
1.8 g/k/d epoch 2
3.0 g/k/d epoch 3

Figure 3. Glucose by epoch and day of life.

Radmacher P and Adamkin DH J of Peri 2009
EARLY ADMINISTRATION of AMINO ACIDS

Delayed TPN

INSULIN

- arginine
- leucine
- “other” amino acids

GLUCOSE

FETAL GROWTH

Na+K+ATPase

K+

Hyperglycemia

Hyperkalemia

Glucose

Transport
Protein Dose in Stock TPN (g/k/d)

<table>
<thead>
<tr>
<th>AA</th>
<th>60ml/k/d</th>
<th>80ml/k/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td>1.2</td>
<td>1.6</td>
</tr>
<tr>
<td>4%</td>
<td>2.4</td>
<td>3.2</td>
</tr>
<tr>
<td>5%</td>
<td>3.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

- If you start with 5% AA you may not be able to increase the fluid rate!
- Additional fluids can be co-infused if glucose and/or electrolyte requirements change
- Can be made from leftover solution at compounding pharmacy and store at room temp for up to one week.
Recommendations Early Amino Acids and Benefits for VLBW

1) Immediate initiation within the first two hours of life.

2) Dosage 2.5 to 3.0 g/k/d initial solution (stock solution)

3) Advance to 3.5-4.0 g/k/d

- Promote growth
- Prevent hyperglycemia and non-oliguric hyperkalemia
- Maintain 1g/k/d TPN protein when fortified breast milk feeds @ 100-110ml/k/d
- Neurocognitive benefit
Feeding Milestones to Prevent Growth Failure in ELBW-VLBW

- 1st trophic feed <3 days
- Duration of trophic feeds (10-20ml/k/d) for 2-5 days dependent on degree of immaturity, tolerance to feeds and clinical condition
- Increments in feeding volume advances after trophic @20-30ml/k/d depending on GA and tolerance
- Target 120ml/k/d with Gavage feeds by 14-21 days
- First Oral feed at 34 weeks or less
- Oral feeds of at least 120ml/k/d at 36-38 weeks PMA
- Ad lib feeds or > 150 ml/k/d by discharge

modified from Jadcherla et al JPEN 2015
Concerns about NEC continue to influence nutrition management decisions in the NICU
Minimal Enteral Nutrition and Feeding Schedule

Kosair Children’s Hospital NICU | Progressive Enteral Feeding Schedule | 20 mL/k/d advancement

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Time of feedings</th>
<th>Enteral (mL/k/d)</th>
<th>Weight (kg)</th>
<th>Vol each feeding</th>
<th>Feeding density</th>
<th>Type of milk or fortification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/ /</td>
<td>Times: ☐ ☐ ☐ ☐ ☐</td>
<td>Trophic</td>
<td>BW</td>
<td>1 mL</td>
<td>20</td>
<td>Colostrum/MBM/DMH</td>
</tr>
<tr>
<td>2</td>
<td>/ /</td>
<td>Times: ☐ ☐ ☐ ☐ ☐</td>
<td>Trophic</td>
<td>BW</td>
<td>1 mL</td>
<td>20</td>
<td>Colostrum/MBM/DMH</td>
</tr>
<tr>
<td>3</td>
<td>/ /</td>
<td>Times: ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td>BW</td>
<td>Wt x 2.5 = __mL</td>
<td>20</td>
<td>Colostrum/MBM/DMH</td>
</tr>
<tr>
<td>4</td>
<td>/ /</td>
<td>Times: ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td>BW</td>
<td>Wt x 5 = __mL</td>
<td>20</td>
<td>Colostrum/MBM/DMH</td>
</tr>
<tr>
<td>5</td>
<td>/ /</td>
<td>Times: ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td>BW</td>
<td>Wt x 7.5 = __mL</td>
<td>20</td>
<td>MBM/DMH</td>
</tr>
<tr>
<td>6</td>
<td>/ /</td>
<td>Times: ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td>BW</td>
<td>Wt x 10 = __mL</td>
<td>20</td>
<td>MBM/DMH</td>
</tr>
<tr>
<td>7</td>
<td>/ /</td>
<td>Times: ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td>BW</td>
<td>Wt x 12.5 = __mL</td>
<td>24</td>
<td>MBM/DMH</td>
</tr>
<tr>
<td>8</td>
<td>/ /</td>
<td>Times: ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td>BW</td>
<td>Wt x 15 = __mL</td>
<td>24</td>
<td>MBM/DMH</td>
</tr>
<tr>
<td>9</td>
<td>/ /</td>
<td>Times: ☐ ☐ ☐ ☐ ☐</td>
<td></td>
<td>BW</td>
<td>Wt x 17.5 = __mL</td>
<td>24</td>
<td>MBM/DMH</td>
</tr>
</tbody>
</table>

*If colostrum/MBM/DMH is not available, use SSC.

© Norton Healthcare 2/13 KCH-6015
Clinical Correlates of Trophic Effects of Human Milk

1. Fewer and lower volume residuals
2. Feeding advancement will be better tolerated and therefore reach full feeds sooner
3. Less episodes of abdominal distention
4. More rapid gastric emptying
5. Low susceptibility to NEC
Early Trophic feeding vs enteral fasting for Very preterm or VLBW infants (Cochrane)

9 trials n=754, Early trophic (up to 24ml/k/d) introduced < 96 hours continued at least one week vs Comparable Enteral fasting (few<1kg or SGA)

RESULTS

No evidence that early trophic affected feeding tolerance or growth rates. Meta analysis did not detect a statistically significant effect on incidence of NEC (RR 1.07 95%CI 0.67-1.70)

No evidence of important beneficial or harmful effects of early trophic feeds for very preterm or VLBW. Applicability of findings to extreme preterm or SGA is limited. (Morgan et al 2018)
Short vs Extended Duration of Trophic Feeding to Reduce Time to Achieve Full Enteral in EPT

N=192 EPT (23-28wks) Retrospective study. 2 Groups Short vs Extended Trophic Feedings. Short Trophic feeds < 3 days, <24ml/k/d. (More babies <750g in Extended group)

(Trophics initiated within 4 days in 85%)

RESULTS

1) Short duration was associated with decreased time to full enteral (mean -4.1 days) 12.5 days vs 9 days with adjustments for appropriate confounders

2) No increase risk of NEC and or death after achieving full feeds
ARE GASTRIC RESIDUALS OVERRATED?

- Are Gastric residuals a surrogate for NEC or feeding intolerance?
- Are they developmental or physiologic and protective of the ELBW gut?
- Should we measure them??
Impact of Routine Evaluation of GRV on the time to Achieve Full Enteral Feeding

- Practice Change in <34 weeks: Routine evaluation of GRV before each feed (n =239) vs Selective evaluation of GRV (n=233) 2 years after change from routine

RESULTS Selective vs Routine Eval of GRV

- Selective Pts weaned off of TPN 1 day sooner, achieved full feeds (150ml/k/d) 1 day earlier. Time to full oral and LOS were similar
- NEC low in both periods (1.7% selective, 3.3% historic)
- GA strongest predictor of time to full feeds
- Findings consistent with subgroup < 1500g

Riskin J Peds 2017
Gastric Residuals

- Don’t check them when on trophic feeds
- They do tend to rise just before diagnosis of NEC but were in the “acceptable range” and of themselves were not diagnostic (Cobb Peds 2004)
- They tend to decrease over time and may be used as a sign of improving feeding tolerance and guide feeding volumes
- No correlation with them and feeding outcomes
Slow Advances of Enteral feed volumes to Prevent NEC in VLBW (Cochrane) 2017

- Slow (up to 24 ml/k/d) v 30 to 40ml/k/d
- 10 trials, n=3753,(2804 from one large SIFT trial) stable AGA majority of infants
- 1/3 ELBW, 1/5 SGA or compromised in utero (AREDHV)

RESULTS

No effects on risk of NEC or All cause mortality

Sub group analyses ELBW or SGA or AREDV showed no evidence of effect on NEC or Death

Slow advance delayed establishment of full feeds by 1-5d

Borderline increased risk of invasive infection with slow

Oddie et al
From Parenteral to Enteral Nutrition: Approach for Evaluating PGF in Preterms

N=156 <32 weeks Chart review
3 Nutrition Phases
TPN / Transition/ Full Enteral
49%PGF

Miller JPEN 2013
Volume of enteral feeds ml/k/d

GROWTH COMPROMIZED

* sig lower vs base TPN
sig higher vs base TPN

Miller M et al. JPEN 2013;38:489-497
How to Transition (eg)

<table>
<thead>
<tr>
<th>Human Milk Feeds</th>
<th>@ 100 mL/kg</th>
<th>@ 110 mL/kg</th>
<th>@ 120 mL/kg</th>
<th>@ 130 mL/kg</th>
<th>@ 140 mL/kg</th>
<th>@ 150 mL/kg</th>
<th>@ 160 mL/kg</th>
<th>@ 170 mL/kg</th>
<th>@ 180 mL/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast Milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast Milk (Plain)</td>
<td>0.9</td>
<td>1.4</td>
<td>1.0</td>
<td>1.5</td>
<td>1.1</td>
<td>1.7</td>
<td>1.2</td>
<td>1.8</td>
<td>1.3</td>
</tr>
<tr>
<td>Breast Milk w/Prolacta (Human)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM24/PL (60% BM + 20% PL)</td>
<td>1.9</td>
<td>2.3</td>
<td>2.1</td>
<td>2.6</td>
<td>2.3</td>
<td>2.8</td>
<td>2.5</td>
<td>3.0</td>
<td>2.7</td>
</tr>
<tr>
<td>BM26/PL (70% BM + 30% PL)</td>
<td>2.4</td>
<td>2.8</td>
<td>2.7</td>
<td>3.1</td>
<td>2.9</td>
<td>3.3</td>
<td>3.2</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>BM28/PL (60% BM + 40% PL)</td>
<td>2.9</td>
<td>3.2</td>
<td>3.2</td>
<td>3.6</td>
<td>3.5</td>
<td>3.9</td>
<td>3.8</td>
<td>4.2</td>
<td>4.1</td>
</tr>
<tr>
<td>BM30/PL (50% BM + 50% PL)</td>
<td>3.5</td>
<td>3.7</td>
<td>3.8</td>
<td>4.1</td>
<td>4.1</td>
<td>4.4</td>
<td>4.5</td>
<td>4.8</td>
<td>5.2</td>
</tr>
<tr>
<td>Breast Milk w/Enfamil HMF-AL (Bovine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM22/EHMF (50% BM + 1 pack HMF)</td>
<td>1.9</td>
<td>2.4</td>
<td>2.1</td>
<td>2.6</td>
<td>2.3</td>
<td>2.8</td>
<td>2.5</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>BM24/EHMF (25% BM + 1 pack HMF)</td>
<td>2.6</td>
<td>3.0</td>
<td>2.8</td>
<td>3.3</td>
<td>3.1</td>
<td>3.6</td>
<td>3.4</td>
<td>3.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Breast Milk w/Similac HMF-HPCL (Bovine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM22/SHMF (50% BM + 1 pack HMF)</td>
<td>1.8</td>
<td>2.0</td>
<td>2.5</td>
<td>2.2</td>
<td>2.7</td>
<td>2.4</td>
<td>2.9</td>
<td>2.5</td>
<td>3.2</td>
</tr>
<tr>
<td>BM24/SHMF (25% BM + 1 pack HMF)</td>
<td>2.4</td>
<td>2.8</td>
<td>2.7</td>
<td>3.1</td>
<td>2.9</td>
<td>3.4</td>
<td>3.1</td>
<td>3.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Breast Milk w/30 kcal/oz Formula (Bovine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM22 (80% BM + 20% SSC30)</td>
<td>1.3</td>
<td>1.7</td>
<td>1.5</td>
<td>1.9</td>
<td>1.6</td>
<td>2.1</td>
<td>1.7</td>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>BM24 (50% BM + 40% SSC30)</td>
<td>1.7</td>
<td>2.0</td>
<td>1.9</td>
<td>2.2</td>
<td>2.1</td>
<td>2.4</td>
<td>2.3</td>
<td>2.7</td>
<td>2.4</td>
</tr>
<tr>
<td>BM27 (30% BM + 70% SSC30)</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.8</td>
<td>2.8</td>
<td>3.1</td>
<td>3.3</td>
<td>3.5</td>
<td>3.6</td>
</tr>
<tr>
<td>Premature Formula (Regular or High Protein)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Calorie</td>
<td>2.4</td>
<td>2.8</td>
<td>2.6</td>
<td>3.0</td>
<td>2.9</td>
<td>3.3</td>
<td>3.1</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>27 Calorie (50% 24 Calorie + 50% 30 Calorie)</td>
<td>2.7</td>
<td>2.9</td>
<td>3.0</td>
<td>3.2</td>
<td>3.2</td>
<td>3.5</td>
<td>3.5</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td>30 Calorie</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>3.9</td>
<td>3.9</td>
<td>4.2</td>
<td>4.0</td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Hypoallergenic Formulas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensively Hydrolyzed 24 Calorie</td>
<td>2.2</td>
<td>2.5</td>
<td>2.4</td>
<td>2.7</td>
<td>2.7</td>
<td>3.0</td>
<td>2.9</td>
<td>3.2</td>
<td>3.1</td>
</tr>
<tr>
<td>Elemental 24 Calorie (all brands)</td>
<td>2.2</td>
<td>2.5</td>
<td>2.4</td>
<td>2.7</td>
<td>2.7</td>
<td>3.0</td>
<td>2.9</td>
<td>3.2</td>
<td>3.1</td>
</tr>
</tbody>
</table>

3.5 – 4 g/kg/day (recommended) – 2.8 g/kg/day (enteral) = 0.7 – 1.2 g/kg/day (TPN)
Goals for Protein and Energy for TPN and Transition to Full Enteral for ELBW

CALORIES 80-100 cal/k/d

PROTEIN 3.5-4.0g/k/d
TWO TRANSITION STRATEGIES to PREVENT POSTNATAL GROWTH FAILURE in ELBW INFANTS

1. Continue TPN Protein until Enteral Feeds reach 120ml/k/d
2. Fortify Concentrated Human Milk fortifier at 40ml/k/d and Concentrated Bovine fortifier at 80ml/k/d
3. Calculate Protein to reach 4g/k/d when transitioning from TPN to Human milk feedings